

## Azure Zero Trust IoT Data Collection System

Team #8, Azure Zero Trust IoT

Project Faculty Advisor: Professor Brendan D. Saltaformaggio

External Partner: Dr. John D. Williams (Boeing), Michael F. Mitchell (Boeing)

James Thomas Computer Engineering jthomas8@gatech.edu Aaron J Wasserman Computer Engineering wasserman@gatech.edu Jayla Williams Computer Engineering jwilliams664@gatech.edu Noah G Dorfman Computer Engineering n.dorfman00@gatech.edu Zixuan Kang Computer Engineering zkang35@gatech.edu

## Overview/Agenda

- Introduction
  - Objectives
  - Motivation
  - Background
- Project Description and Goals
- Technical Specification
- Design Approach and Details
  - MQTT vs AMQP
  - RP4 vs LTE
- Project Demonstration Plan
- Schedule, Tasks and Milestones (Planned)
  - Schedule Changes (Modified and purchasing problems)
- Marketing and Cost Analysis
- Leadership Roles
- Next Steps

## Objectives

- Design and prototype a secure IoT system for data collection and remote storage
  - Nordic microcontroller devices to form bluetooth, data-collection mesh
  - Transmit data via cellular connection to Azure IoT Hub cloud platform
  - Employ Azure Zero Trust framework throughout
- Demonstrate security of the system
  - Hardware attacks
  - Network attacks
  - Software attacks



#### **Motivation**

- CPS/IoT improves our daily lives
- 5G initiative
- Provide information protection and monetization





#### Background

- Past: Castle-and-Moat Approach
  - o IPv4/IPv6
  - Verify IP addresses
  - Geographical Location
- Nowadays: Cloud Services/Outsourcing Server
  - Once the system is conquered, nothing in there is safe.
  - Lateral attack
- Solution: Always verify, never trust -- Zero Trust Architecture (ZTA)
  - Microsoft Authenticator
  - Duo Mobile

## **Project Description and Goals**

Relatively inexpensive, secure, IoT data collection system

- Use Nordic devices that can support:
  - BLE mesh
  - LTE data transmission
- Follow Azure Zero Trust framework
  - Network traffic security
  - Software development practices

# FIGH MET THEIR NEEDS Ref Y PLAYERS Prof Bruno Frazier Prof Shyh-Chiang Shen Ref Y PLAYERS MONITOR Dr. John D. Williams, Michael Mitchell MONITOR r/a SHOW CONSIDERATION Monitor Cyfi Lab Researchers (Consult on technical areas)

STAKEHOLDER ANALYSIS FOR

#### **Technical Specifications**

#### **General System**

#### Security

| Item                                      | Specification | Item                           | Specification                      |
|-------------------------------------------|---------------|--------------------------------|------------------------------------|
| Supported Number of Devices in<br>Network | > 2 nodes     | Zero Trust Protocol            | 1 handshake/transmission           |
| Cost                                      | < \$500       | Hardware Access to Sensor Data | 0 known vulnerable side-channel    |
| Data Collection Frequency                 | 100 Hz        |                                | vectors                            |
|                                           | 100112        | Software Access to Sensor Data | 0 leaks to non-authorized accesses |
| Battery Life (minimum)                    | 4 hours       |                                |                                    |
|                                           |               | Resistance to "Fuzzing"        | 0 device crashes                   |

### Design Approach and Details -- MQTT vs AMQP

| AMQP                                                                                                                                                                                                                     | MQTT                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Can be more secure.</li> <li>More configurable</li> <li>For Azure, AMQP is needed for<br/>using their service endpoints</li> <li>For Azure, Microsoft offers various<br/>security features with AMQP</li> </ul> | <ul> <li>Low overhead</li> <li>Simple to implement and send data<br/>from embedded systems.</li> <li>Best for many small messages on<br/>low-bandwidth networks</li> <li>For Azure, MQTT works well with<br/>Azure Data Lake Storage</li> <li>For Azure, IoT Protocol Gateway<br/>offers a way to bridge to AMQP if a<br/>service offering from MS is<br/>required</li> </ul> |

### Design Approach and Details -- RP4 vs LTE

| LTE                                                                                                                                                                    | Separate Gateway (RP4)                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Lightweight system (eliminate the need for extra devices)</li> <li>useful everywhere with a cellular connection</li> <li>Security less complicated</li> </ul> | <ul> <li>Initialization is easier.</li> <li>More existing community support</li> <li>More versatile</li> <li>Allows for more complicated tasks to be completed.</li> <li>Useful for future applications (doing work on the network edge, rather than going to the server for everything)</li> </ul> |

#### **Project Demonstration Plan**

- Functional Demo
  - Present a functional mesh network of Nordic devices actively measuring and transmitting environmental data to a database
  - Have laptop showing the data updating in real time w/ minimum sampling rate spec shown
- Dummy System Demo
  - Poster detailing attacks tested on the system showing robustness against common attack vectors
  - Show a dummy system implemented on a Raspberry Pi or similar where the attacks are successful side by side with the attacks failing on our system

#### Schedule, Tasks, and Milestones (Planned)

- Intent was to complete the following tasks over the summer
  - Order nordic devices
  - Test program reading data
  - Setup BLE mesh network
  - Setup cloud services
  - Setup comms with server
  - Test basic functionality
- Would've left only the vulnerability assessment, patching, and presentation/documentation preparation for the fall
- A delay on purchasing has caused us to have to adjust this schedule

### Schedule Changes (Modified after purchasing problems)

- Original plan was to get mesh network functionality completed over summer
  - Intended to leave more time for vulnerability screening and patching in the fall
     Attempted to purchase the pardia deviage however our requests were
- Attempted to purchase the nordic devices however our requests were pushed back while they were setting up the purchasing/reimbursement system
- As of last week purchasing still isn't live so we still have had no development time with hardware
- Will expedite system development at the front of the semester to leave as much time for security assessment and patching as possible
  - May have to focus on a smaller portion of the attack surface for the system

#### Marketing and Cost Analysis

 Please review the proposal document for detailed breakdown of costs and for market research

| Item                                  | Unit Cost | Quantity  | Cost            |
|---------------------------------------|-----------|-----------|-----------------|
| <u>NRF6943</u><br>( <u>Thingy:91)</u> | 126.25    | 4 devices | 505.00          |
| USB A to Micro<br><u>5 pack</u>       | 21.99     | 1         | 21.99           |
| USB A to wall 5<br>pack               | 10.75     | 1         | 10.75           |
|                                       |           | Total     | 536.74 +<br>s/h |

| Task                    | Hours   |
|-------------------------|---------|
| Weekly Meetings         | 32      |
| Reports                 | 3       |
| Research                | 7.5     |
| Presentation            | 2       |
| Assembly and Coding     | 15.1    |
| Vulnerability Testing   | 23.7    |
| Total Hours             | 83.3    |
| Labor Cost per Engineer | 2707.25 |
| Labor Cost for Team     | 13536.2 |

Table 6. Engineering Labor Cost Breakdown

| otal Development Costs                                 |           |
|--------------------------------------------------------|-----------|
| Development Components                                 | Cost      |
| Parts                                                  | 1325.75   |
| Labor                                                  | 13536.25  |
| Fringe Benefits. % of Labor                            | 4060.875  |
| Subtotal                                               | 18922.875 |
| Overhead, % of Material,<br>labor, and fringe benefits | 22707.45  |
| Total Cost                                             | 41630.325 |

Table 7. Cost Summary

#### Leadership Roles

Jayla Williams - Webmaster, Networking Lead

Aaron Wasserman - Expo Coordinator, Hardware Security Testing Lead

James Thomas - Azure IoT Software Lead

Noah Dorfman - Documentation, Embedded Hardware Lead

Harry Kang - Implementation Testing, Embedded Software Lead

### Attack Plan

#### • Hardware:

- Wiretapping
- Power Analysis Attack
- VFI Glitching Attacks
- Check for Radiation, Single Event Upset

#### • Software:

- Wireless Attack (Wireshark)
- Wired Attack
- Fuzzing



## Next Steps

- Deliver Proposal Presentation (Right now!)
- Revise project proposal and summary with feedback
- Continue escalating our purchasing requests
  - Need hardware in hand to keep moving forward
  - Already behind on our original schedule since purchasing wasn't supported during the summer
- Finalize weekly group meeting time

# Questions?