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Path Planning for Autonomous Surface Vehicles 

Introduction  

Autonomous Surface Vehicles (ASVs) provide a platform for deploying maritime-sea 

applications in river, lake, and sea environments. These can range from industrial applications in 

international commerce shipping, to applications in sea-life monitoring and pollution reduction. While 

humans have navigated water environments for centuries, the advent of robotics technologies has allowed 

autonomous operation of these water vessels with the goal of reducing personnel cost and improve safety 

by eliminating human error. Key to enabling these autonomous capabilities is the technology of path 

planning that allows an ASV to autonomously plan a route within its environment. This technical review 

offers an overview of the industrial and government applications enabled by path planning for ASVs, a 

problem formulation that is key to understanding path planning, and a brief discussion of state-of-the-art 

path planning algorithms currently being implemented on ASVs. 

The Autonomous Surface Vehicle Market 

      Industry 

Path planning has enabled the autonomous operation of maritime applications that previously 

required supervised and manned operation. This has led to an unprecedented growth in the ASV market, 

as reports find that its global market is expected to grow 13.2% from $522.6 Million USD in 2020 to $1.2 

Billion USD by 2027 [1]. Commercial applications for ASVs  are used in the shipping industry, which 

transports commercial goods through international waters, often navigating complex and challenging 

environments. A Norwegian company, Wilhelmsen and Kongsberg Maritime, is leading the effort by 

introducing the world’s first autonomous shipping company [2]. Furthermore, investments to advance 

safety capabilities in ASV technologies has been made by companies such as Intel and Rolls Royce [3]. 

Similarly, human-interaction applications for ASVs are also prominent in industry, as shown by Rolls 

Royce and Finferries’ Autonomous Ferry that aims to transport people autonomously through water [4]. 

      Government  

The ASV market also includes the government, through the defense industry which has made 

large investments in advancing these technologies for military applications. A Congressional Research 

Service Report shows that the US Navy has requested $579.9 million in FY2021 research and 

development funding to develop and enable autonomous navigation technologies of ASVs and similar 

autonomous maritime vehicles [5]. Furthermore, government interest in ASV applications is also related 

to environmental issues and research. For example, the UK based National Oceanography Centre has 

deployed a fleet of ASVs to autonomously navigate the UK’s seas in search for marine animals, sea 

pollution, and to collect scientific research data related to oceanography [6]. 



   
 

   
 

The Path Planning Problem 

      Problem Formulation 

We begin by defining the path planning problem as a problem that aims to find a series of 

waypoints that allow an ASV to travel from its starting position to its goal position [7].  In order to begin 

solving this problem, the ASV must understand its environment through sensory information.  Examples 

of these sensor can include stereo vision cameras, thermal imaging cameras, LIDAR, and marine radar 

[8]. The scope of this review does not cover how the ASV interfaces with these sensors, but we assume 

that they are used to build a roadmap that encapsulates physical obstacles and other environmental 

constraints under which the ASV must navigate. Given this free configuration space [9] – the state space 

that is achievable by the ASV given the obstacles and constraints of its environment – the path planner 

can search through this space to find a geometrically achievable and (optionally) optimal path. Given this, 

we must break up the path planning problem into two sub-problems: global planning and local planning 

[7]. The goal of global planning is stated as before: to find a route between a starting state and a goal state 

given the entire free configuration space. The local planning problem differs from this in that it is only 

concerned with the local configuration space of the robot, considering dynamic obstacles that may be 

present as an ASV is following a global plan. This allows the ASV to deviate from the original plan, in 

order to avoid the obstacle, and then for it to re-route back to the original global plan. While these 

subproblems are similar, the literature around path planning distinguishes heavily between them. This 

creates an interesting paradigm where very different algorithms and techniques can be used between two 

very similar problems. This makes path planning an exciting and active research field. 

      Control, Navigation and Guidance  

It is important to understand that path planning itself is a subproblem of the entire architecture 

that enables autonomous navigation for ASVs. To fully appreciate path planning, it must be placed in the 

context of the Control, Guidance, and Navigation modules of this architecture  [7].  The control module 

in this architecture deals with generating time-based trajectories between waypoints found by the path 

planner, and considers the dynamics and control allocation of the ASV. The guidance module is where 

path planning resides, with the ability to detect targets, detect obstacles, and generate waypoints through 

global and local path planning. Finally, the navigation module consists of processing sensor data to 

perform state estimation, environment perception and situational awareness for the ASV. This 

architecture is a top-down approach as the navigation module informs the guidance module, which then 

informs the control module.  

Path Planning Algorithms 



   
 

   
 

In this section we briefly describe how various path planning algorithms work. As in Vagale [10], 

we classify these algorithms under two approaches: classical and advanced. In classical algorithms, the 

free configuration space is represented as a graph of connected nodes that the planning algorithm must 

search through in order to find a path. Meanwhile, advanced algorithms are more novel and incorporate 

advanced techniques from fields such as control theory and machine learning.  

      Classical Approach 

One classical algorithm that has been implemented on ASVs is the Dijkstra Algorithm [11]. In 

this algorithm a map of the environment is received and turned into a grid-space representation. The cells 

of this grid are then turned into nodes of a graph where connectivity between nodes represents feasible 

transitions from one free-configuration state to the next. The Dijkstra Algorithm computes the shortest 

path from the start node (the initial state of the ASV in the grid-map) to every other node in the graph. 

With this we can return an optimal path any goal node (the goal state in the grid-map). This kind of 

algorithm is suitable for global path planning in a static environment. To deal with more complex and 

dynamic environments, sampling-based planning algorithms such as Rapidly Random Exploring Trees 

(RRT) have been implemented on ASVs to rapidly generate kino-dynamically feasible paths [12]. This 

algorithm also works by representing the free configuration space as nodes in a tree-based graph. First, 

given a starting node (the ASV’s initial state), a node in the free configuration space is randomly sampled. 

Then, the vehicle is steered from the nearest node in the tree towards this new node given the kino-

dynamics of the ASV. The resulting node is added to the overall tree, thus creating a possible path.  This 

process is repeated until the ASV reaches the goal state through one of these possible paths.  

      Advanced Approach 

There are new advanced algorithms that utilize advanced techniques from the field of control 

theory to do local planning. One such algorithm implements model predictive control for local planning  

on an ASV [13]. This algorithm uses an advanced model for the dynamics of the ship’s steering and 

propulsion system, the dynamics of forces due to wind and ocean current, and the dynamics of obstacles 

in the environment to do local planning. This algorithm is very robust to complex environments, dynamic 

obstacles, and uncertainty associated with sensors and predictions. However, these methods require an 

extensively known model of the entire system under consideration. To circumvent this problem, 

techniques from machine learning theory such as deep reinforcement learning have been used to 

implement algorithms for local planning on ASVs [14]. These algorithms use deep neural-networks to 

learn a model that can do local planning with no knowledge of the internal dynamics of the ASV, or the 

environment. This approach has high adaptability and robustness to previously unknown and complex 

environments and does not require extensive modeling. 
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