
ECE4873 Project Summary
Project Title Dia-Bot, Installation Diagnostic Robot: 004-Dia-Bot (Diagnostic Robot) Platform

Team Members
(names and majors)

Catherine “Grace” Kasper, CompE
Connor Truono, CompE
Andrew Galant, ME
Jason Piotter, ME
Hunter Present, ME
Douglas Walker, ME

Course & Section
Primary Advisor

ECE 4723 A/L01
Jianxin Jiao (ME), Vijay Madisetti (ECE)

Semester 2021/Fall Course: ECE 4723

Web Site URL https://eceseniordesign2021fall.ece.gatech.edu/sd21f09/

Project Abstract
(250-300 words)

 Our team's sponsor, Vanderlande, is an industry-leading producer of logistic
process automation with shuttle and conveyor systems. When installing such large
transport systems, there are many potential issues which may be found. Therefore,
manual verification of their structure and components can take a long time.

 Because of this issue, Vanderlande desires a tool to help verify their shuttle and
conveyor systems during installation - namely, a diagnostic robot, or "Dia-Bot".
This robot must be able to traverse the systems under its own power and provide
necessary data to assist in quality assurance, ultimately reducing verification time.

 For system requirements, the Dia-Bot must be conveyable across all traditional
conveyor surfaces (belts, rollers, curves, diverts) and able to traverse normal
transitions (inclines, declines, merges, diverges). Additionally, it must be robust to
withstand all system vibrations during its own movement and when being passively
conveyed. While moving through the system, the bot must wirelessly transmit data
to Vanderlande operators, most importantly a camera feed with 360-degree rotation
and vertical tilting. Other sensors and algorithms should measure system data, such
as vibration, sound, and temperature.

 The multidisciplinary team took a full approach to solving the mechanical,
electrical, and software needs of creating a Dia-Bot prototype for proper concept
validation for Vanderlande. The final design includes a vented metal main body
frame to house and protect electrical components, continuous treads with a
suspension system for navigating potentially tough conveyor terrain, and a full user
interface with data processing abilities interacting with embedded components.

 Vanderlande operators can wirelessly connect to, control, and receive real-time
images and data from the Dia-Bot. These movement, visuals, and data processing
features allow operators to quickly identify potential installation problems during
system verification, ultimately reducing required production time.

Project Title Dia-Bot, Installation Diagnostic Robot: 004-Dia-Bot (Diagnostic Robot) Platform
List codes and standards
that significantly affect
your project. Briefly
describe how they
influenced your design.

NIOSH Lifting Equation:
Factors: Frequency, Asymmetry, Coupling, Distance, Vertical, Horizontal

- No OSHA limit on object lifting weight
- NIOSH equation predicts injury risk

 There are no hard requirements on weight of objects in the workplace, but
depending on how and how often objects are lifted, there may be more injury risk.
With this and Vanderlande’s size and weight requirements in mind, the
mechanical team aimed to keep the bot’s weight down while still being sturdy.

List at least two
significant realistic
design constraints that
applied to your project.
Briefly describe how they
affected your design.

1. Wireless connectivity

 As the robot will be navigating through large conveyor systems away from
operators, proper wireless connection must be established and all relevant data for
images and control must be transmitted. This affected our choice of
microprocessor, going with a Raspberry Pi 4 for its on-board Wi-Fi module and
simple connectivity

2. Responsive software interface
 Many requirements needed to be represented in software, including data
collection, processing, video streaming, and motor control. Due to the heavy load
on an embedded processor, the software architecture had to be engineered with
complex forms of multiprocessing and multithreading within processes. This
architecture required much more effort to achieve in the Python environment but
the constraints on interface responsiveness, in addition to other software
requirements, all running on one processor to reduce electrical power used
(another constraint), affected the programming process.

Briefly explain two
significant trade-offs
considered in your
design, including options
considered and the
solution chosen.

1. Web server vs. RealVNC: Exposing a user interface

 For wireless real -time communication with the bot, we could have set up an
HTTP server on the Pi to send individual commands via a web browser. This was
ultimately more complicated and did not permit live data and video updates as
easily as using the RealVNC Viewer and Server, allowing direct control of the Pi
and on-board data storage

2. Treads vs Wheels: Ability to traverse rough conveyor terrain
 While wheels have many advantages over continuous treads, such as speed and
efficiency, the choice was ultimately made to run treads with a suspension system
due to the requirement for the bot to properly traverse conveyor surfaces and
normal transitions, making the bot as flexible as possible

Briefly describe the
computing aspects of
your projects, specifically
identifying hardware-
software tradeoffs,
interfaces, and/or
interactions.

Complete if applicable;
required if team includes
CmpE majors.

 A key goal of the Dia-Bot software was to create a GUI which was done in
Python3. Tkinter (“Tk interface”) was used to create a GUI, implementing
buttons, sliders, and text input for the user, and interfacing with matplotlib for live
graphing and real-time data updates.

 Sensors, DC motors, and camera servos controlled via GPIO pins from the
Python software. Requires I2C (accelerometer) and SPI (ADC, since no analog
pins exist on the Pi) interfaces with external libraries.
 Camera feed and image capturing completed with the Picamera software
stack. Since this has been deprecated on the newest Raspbian OS version, an older
version had to be used until Python bindings are made for the replacement library.
This camera preview, while controlled by the software, is overlayed on top of the
TK GUI rather than interfaced into it.

 One of the main challenges with the software was the multiprocessing of
Python. The Multiprocessing Python library used to ensure responsive GUI and
real-time data on the 4-core Broadcom processor. Uses one main process for TK,
and for each data type, one to collect data from GPIO, and another to process data
and collect relevant metrics. This software architecture was easily the toughest
computing aspect, but worthwhile and necessary for proper speed via parallel
processing.

