MicroFloats: Progress Report

Ideation and Concept Generation

Swarmers Dahrius Abdelnur, Will Jarman, Terence Lui, Alex Olsen, Vatsal Trivedi, Sidney Wise

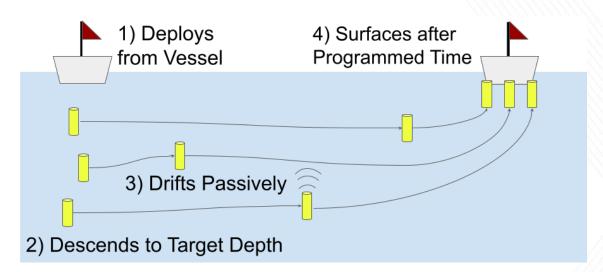
Team Structure

Member	Description							
Alex Olsen (ME)								
Dahrius Abdelnur (ME)								
Will Jarman (ME)	anages project CAD and computer-aided analysis like FEA; presents the team in supplier communications							
Sidney Wise (CmpE)	Manages electronics and communications systems; responsible for developing electronics BOM and determining feasibility							
Terence Lui (ME)	Ensures that design meets engineering specifications; develops mechanical assembly							
Vatsal Trivedi (ME)	Trivedi (ME) Responsible for developing project website; works with electrical lead when necessary on any custom software							
	Faculty Member							
	Dr. Michael West, ECE	Georgia						
	Dr. Amit Jariwala, ME							
	Alex Olsen (ME) Dahrius Abdelnur (ME) Will Jarman (ME) Sidney Wise (CmpE) Terence Lui (ME)	Alex Olsen (ME)Coordinates group meetings and scheduling; ensure deliverables are completed on time; ensures project maintainedDahrius Abdelnur (ME)Ensures manufacturability and viability of all design components; works with electrical lead to develop electronic systemWill Jarman (ME)Manages project CAD and computer-aided analysis represents the team in supplier communications for developing electronics BOM and determining fea- for developing electronics BOM and determining fea- mechanical assemblyVatsal Trivedi (ME)Responsible for developing project website; works to lead when necessary on any custom softwareFaculty Member Dr. Michael West, ECE						

Presentation Outline

Project Overview	slide 4
Introduction	slide 5
Stakeholders and Market Research	slide 6
Previous Work	slide 7
Prior Art	slides 8-10
Relevant Codes and Standards	slide 11
Customer Requirements	slide 12
Engineering Specifications	slide 12
House of Quality	slide 13
Function Tree.	
Morphological Chart.	slides 15-16
Concept Sketches.	slides 17-19
Evaluation Matrix and Concept Selection	slides 20-23
Project Timeline.	slide 24
Future Work	slide 25
	Georgia

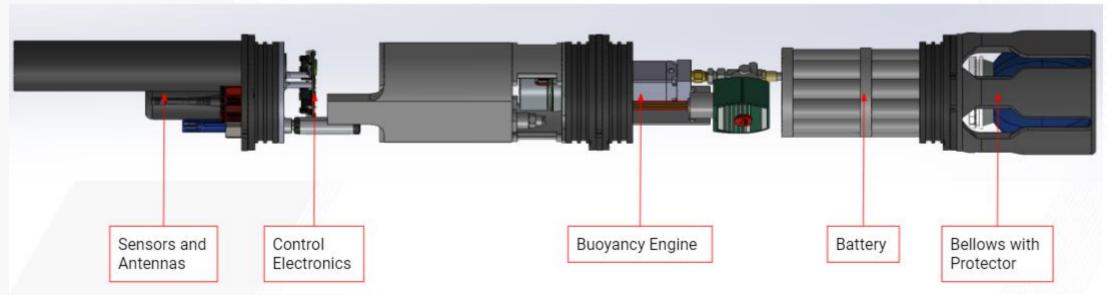
CREATING THE NEXT


Project Overview

- Ocean scientists wish to better understand the effects of climate change on ocean chemistry
 - CO₂ in the atmosphere is absorbed by the oceans, a phenomenon commonly called "ocean acidification"
 - Measuring methane seeps is also a complementary goal, with the Gulf of Mexico serving as a rough, terrestrial analog for Titan
- Ocean chemistry will be best understood by surveying large areas of ocean waters
 - Multiple devices are needed to survey the vast areas needed for an accurate understanding; singular autonomous
 underwater vehicles are impractical and inefficient for this purpose
 - Instead, ocean scientists could better use a swarm of autonomous floats that communicate with each other and can blanket a large swath of water
 - Each float concentrates on a column of water, from the surface to a maximum depth
 - Aggregated swarm data can be used to create a 3D mesh of a volume of ocean water, with relevant measurements
 like carbon dioxide and methane taken at each node

Introduction - MicroFloats

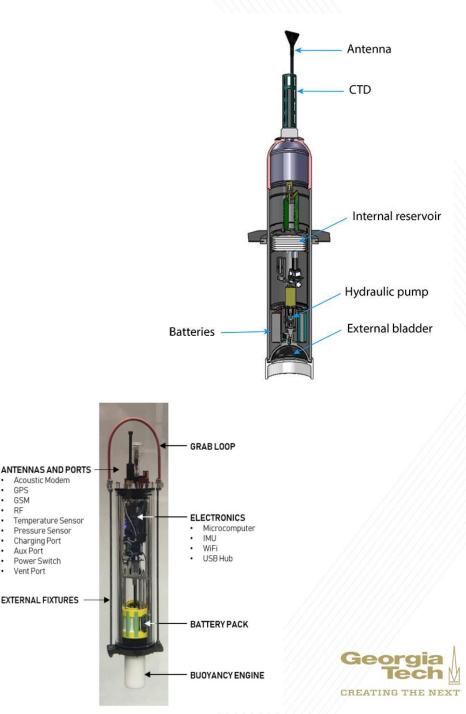
- Small autonomous underwater device for oceanic monitoring
- Lateral Motion
 - Ocean currents will be utilized
- Vertical Motion
 - A buoyancy control device will be utilized
- Sensors
 - Pressure, methane, and conductivity
- Swarm Mechanics
 - Robots must have the ability to communicate with each other



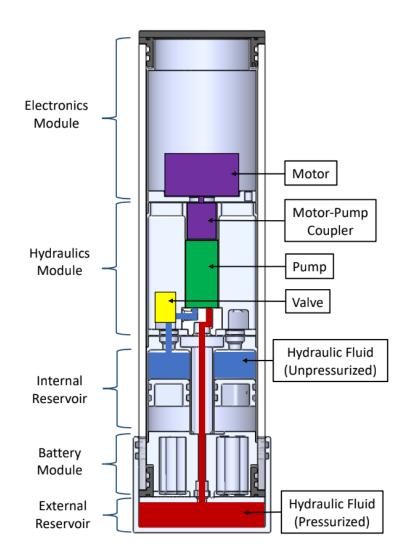
Stakeholders and Market Research

- Stakeholders
 - Dr. Mick West
- Market Research
 - Market size: Very small
 - Demographics: Oceanic researchers
 - Market research plan: Regular design meetings and continuous communication, with Dr. West as liaison
 - Price Range: \$800 \$1000 per unit to start
 - No similar commercial product

Previous Work - RUR

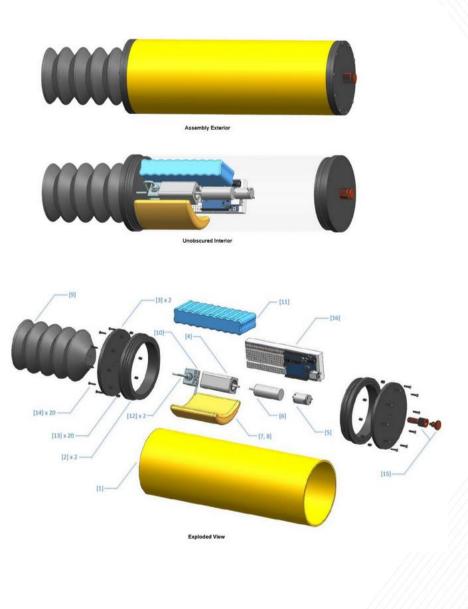


- Spring 2021 Capstone Team
- Utilized bellows to alter displacement and control depth
 - Bellows inflated with oil hydraulics
- Theoretically able to achieve 450 m underwater
- Tested for 15 feet descend
- 1 week battery life


Prior Art – Research Projects

- Argo Project
 - Satellite communication (after resurface)
 - Buoyancy control
 - Oil pumping piston pumping
 - Patented buoyancy engine
- µFloats
 - Design for lakes (low depth)
 - Constant communication
 - Only with buoys
 - Buoyancy control
 - Screw mechanism

Prior Art – VIP Project


- Lagrangian Profiler MK4
 - Surface communication
 - Buoyancy control
 - Oil displacement piston
 - External "shell" piston

Georgia Tech

Prior Art – Design Project

- Together We Swim
 - Buoyancy control
 - Oil pumping
 - Prototype validation failure
 - Unresolvable sealing issues
 - Created CAD concept

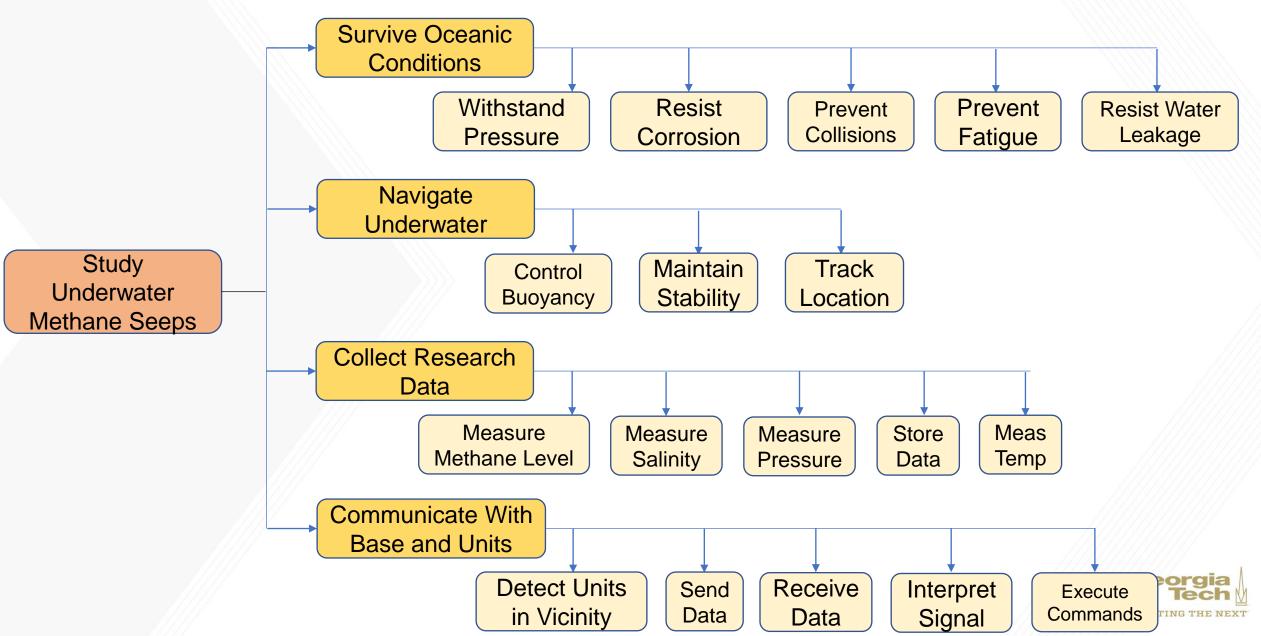
Codes and Standards

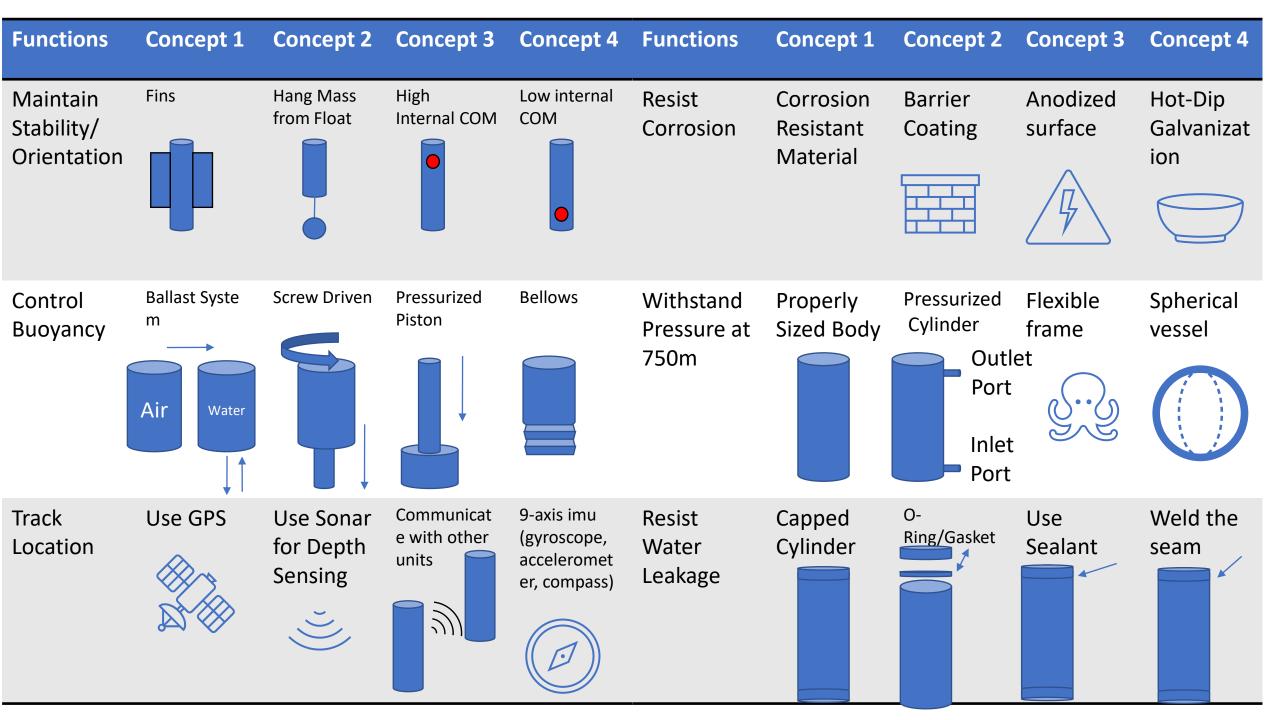
- Standard Practice for Exposing and Evaluating Metals and Alloys in Surface Seawater
 - ASTM G52 20
 - Requirements and recommendation to evaluate corrosion and marine fouling behavior of materials exposed to a saltwater environment
- Standard Specification for Sealless Lube Oil Pump with Oil Through Motor for Marine Applications
 - ASTM F2798-09(2018)
 - Requirements applicable to design, construction and testing of sealless, rotary positive displacement pumps with oilthrough motors for marine operations
- Antifouling paint
 - 304(a) of the Clean Water Act (CWA)
 - < 0.0074 μ g/L on a 4-day average, or < 0.42 μ g/L on a 1-hour average
- RoHS Standard
 - <0.1% by weight for lead mercury, hexavalent chromium and cadmium
 - States including California, New Mexico, New York and Rode Island

Requirements and Specifications

- Travel Vertically in Water
 - Detect depth (0 750 m)
 - Maintain stability
 - Alter buoyancy (0.5 m/s)
- Endure ocean conditions
 - Corrosion resistant (withstand two weeks submerged in sea water)
 - Withstand 750 m water pressure
- Collect measurements
 - Store two weeks of sensor data
 - Support multiple sensors
 - Support flexible sensor mounting
- Convey position and sensor readings upon surfacing
 - Send and receive signals
 - Localization (latitude, longitude and depth)

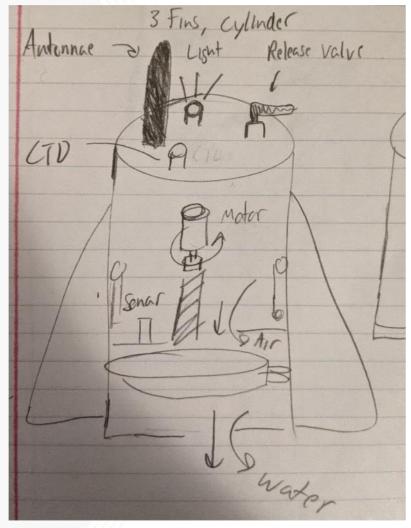
- Needs to have standard buoy size: 4.875" diameter, 36" length
- Needs to have at least two-week battery life
- Needs a visual marker upon resurfacing for visibility (LED Flasher)
- Must be able to release internal pressure upon returning to sea level
- Must be able to independently switch sensors on or off




uality
O
of
Se
lou
н.
Ö
Р

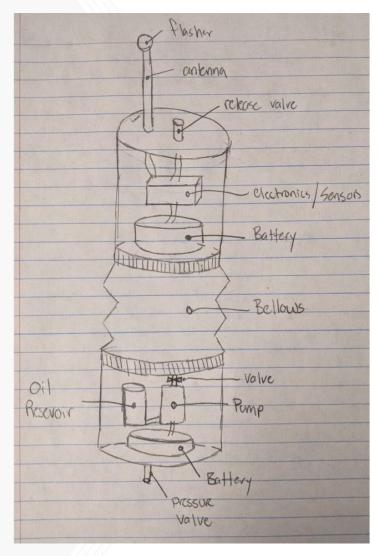
		Column #	1	2	3	4	5	6	7	8	ſ
		Direction of Improvement					▼	▼		\diamond	Ľ
Category	vveight	Customer Requirements (Explicit and Implicit) Measure Methane Seeps		Compressive Strength (Mpa)	Sensing Range (m)	Motion Range (# cycles)	Mass (kg)	Cost (\$)	Batteny Life (weeks)	Resolution	
Sensing	10	Measure Methane Seeps								•	
conomy	8	Identify Pressure upto 1500 psi								•	
Size	5	As Small as Possible	∇	∇		0	•	•	0		
Longevity	10 Withstand Ocean conditions 1000m deep		•	•				0			
Longevity	7	>2 week battery life			∇	•	\bigtriangledown	0	•		
Budget	4	<\$800 budget	∇	∇		0	0	•	0		
	2	Swarmability			•			0	∇		
Primary	10	Alter buoyancy	∇	∇		\bigtriangledown	\bigtriangledown		0		
Applications	6	Easy to Operate			0	0	∇		∇		
	8	Easy to Fabricate	∇	∇			0				
		Target	15	15	1000	1000	75	800	2	1 /1 OR	
		Max Relationship	9	9	9	9	9	9	9	9	Ľ
		Technical Importance Rating	117	117	43	118	104	138	128	162	
		Relative Weight	13%	13%	5%	13%	11%	15%	14%	17%	Ļ.
		Weight Chart	≣		=		III				
		Column #	1	2	3	4	5	6	7	8	L

Georgia Tech

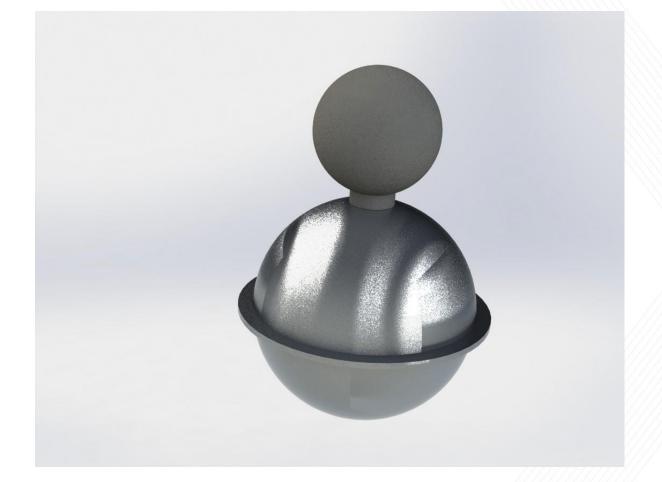

Function Tree

Functions	Concept 1	Concept 2	Concept 3	Concept 4	Functions	Concept 1	Concept 2	Concept 3	Concept 4
Store Sensor Data	Save to SD card	Save to usb-drive	Save to micro- computer storage		Send and Receive Signals	RF module + Antenna	Sonar Module	Wi-fi Emitter	
Support Multiple Sensors	Multiple inputs on controller	Sufficient Cap Space	Integrate additional sensors onto pcb	Universal connector port	Convey Position and Sensor Readings	Read Stored Data and Send it	Get current sensor readings and Post	Transmit data when surfaced	Storage device retrieved by scientists
Support Universal Mounting	Interchange able Sensor Nodes	Standardized waterproof connectors			Prevent Collisions	Light to Signal Status	Sonar to Detect Floor	Thrusters for X and Y movements	

Integrated Concept Designs (1-2)

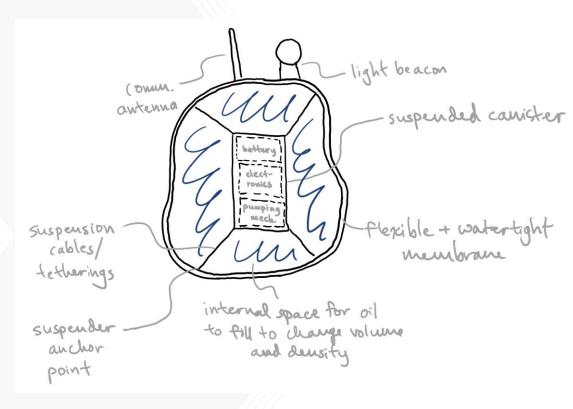

Bottom piston concept

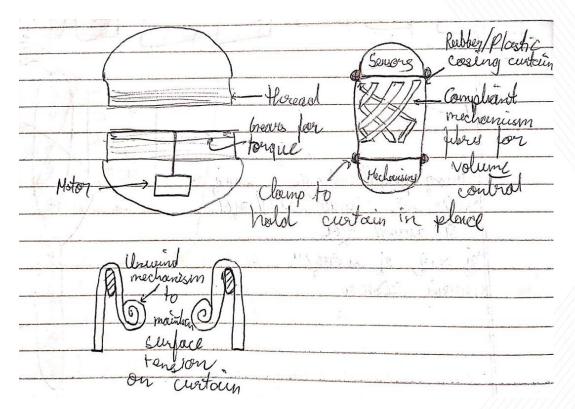
LED Antennae Release Clamping Endcap Design Flectronics Battery Bellows


Bottom bellows concept with clamped endcaps

Georgia Tech

Integrated Concept Designs (3-4)


Middle bellows concept


Flanged sphere concept with oil sack

Integrated Concept Designs (5-6)

Soft balloon concept

Compliant sphere concept

Evaluation Matrix

- Criteria for ranking concepts developed from revised function tree and each assigned a relative importance value
 - Ability to measure methane seeps, altering buoyancy, and withstanding ocean conditions at 750 m are the core functions of the vehicle and thus the most important criteria; not successfully completing any one of these would be a design failure
- Each concept was given a fair discussion to reach a consensus on rating for each criterion
- Swarmability is a desired but secondary feature, partially outside the scope of this project, and relies on a communication protocol and internal electronics, so it is not impacted significantly by the mechanical design

Evaluation Matrix

Criteria	Importance	Bottom Piston		Bottom Bellows		Middle Bellows		Spher	e Sack	Soft B	alloon	Compliant Sphere		
Griteria	importance	Rating	W. Total	Rating	W. Total	Rating	W. Total	Rating	W. Total	Rating	W. Total	Rating	W. Total	
Measure methane seeps	10	10	100	10	100	10	100	10	100	10	100	10	100	
Identify pressure up to 1500 psi	8	10	80	10	80	10	80	10	80	10	80	10	80	
As small as possible	5	6	30	6	30	6	30	8	40	9	9 45		40	
Withstand ocean conditions at 1000 m	10	7	70	8	80	7	70	10	100	10	100	9	90	
Two-week battery life minimum	7	8	56	8	56	9	63	6	6 42 6 42		42	6	42	
<\$800 budget	4	9	36	8	32	8	32	4	16	2	8	6	24	
Swarmability	2	0	0	0	0	0	0	0	0	0	0	0	0	
Alter buoyancy	10	4	40	8	80	8	80	8	80	8	80	5	50	
Easy to operate	6	6	36	8	48	9	54	5	30	2	12	5	30	
Easy to fabricate	8	7	56	9	72	6	48	5	40	2	16	4	32	
Total		50	504 578		5	57	52	28	483		488			
Relative Total		0.1606	611855	0.1841	193754	0.177501593		0.168260038		0.1539	919694	0.155513066		
Rank		4	4		1	2			3		6		5	

Evaluation Matrix

Criteria	Importance	Bottom Piston		Bottom Bellows		Middle Bellows		Spher	e Sack	Soft B	alloon	Compliant Sphere		
Griteria	Importance	Rating	W. Total	Rating	W. Total	Rating	W. Total	Rating	W. Total	Rating	W. Total	Rating	W. Total	
Measure methane seeps	10	10	100	10	100	10	100	10	100	10	10 100 10		100	
Identify pressure up to 1500 psi	8	10	80	10	80	10	80	10	80	10	80	10	80	
As small as possible	5	6	30	6	30	6	30	8	40	9	45	8	40	
Withstand ocean conditions at 1000 m	10	7	70	8	80	7	70	10	100	10	100	9	90	
Two-week battery life minimum	7	8	56	8	56	9	63	6 42		6	42	6	42	
<\$800 budget	4	9	36	8	32	8	32	4	16	2	8	6	24	
Swarmability	2	0	0	0	0	0	0	0	0	0 0		0	0	
Alter buoyancy	10	4	40	8	80	8	80	8	80	8	80	5	50	
Easy to operate	6	6	36	8	48	9	54	5	30	2	12	5	30	
Easy to fabricate	8	7	56	9	72	6	48	5	40	2	16	4	32	
Total		504 578		5	57	528		483		488				
Relative Total		0.1606	611855	0.1841	0.177501593		0.168260038		0.153919694		0.155513066			
Rank			4		1	2		3			6	:	5	

• Unique strengths for the top three designs are highlighted

Concept Selection

Bottom Bellows (1)	Middle Bellows (2)	Flanged Sphere with Oil Sack (3)
Alterna	Chi Construction Constructio	
Easiest to fabricate of all concepts; practical	Easiest to operate and service; built-in modularity	Most compact and space- efficient
Not hydrodynamic; threaded rods exposed to corrosion	Not significantly different in function from (1) but more complex	Difficult to manufacture; potentially less stable underwater; packaging
Circular endcaps, larger diameter casing around threaded rods	Tradeoff between complexity and modularity	Off-the-shelf spherical casing; self-righting system
May investigate alternative bellows design based on compliant mechanism	May investigate alternative bellows design based on compliant mechanism	Will run preliminary design calculations but ultimately may prove impractical
	Image: constant of abbricate of all concepts; practicalNot hydrodynamic; threaded rods exposed to corrosionCircular endcaps, larger diameter casing around threaded rodsMay investigate alternative bellows design based on compliant	Image: constraint of the second sec

Project Timeline

MicroFloats

Swarmers

Project Manager: Alex Olsen		Project Start:	Mon, 8,	/30/2021																		
		Display Week:	1		Aug 3	30, 2021		Sep 6,	2021		Sep	13, 20	021		Sep	20, 20	21		Sep	27, 20	21	
					30 31	123	45	678	9 10	11 12	13 14	15 1	6 17	18 19	20 21	22 2	3 24 3	25 26	27 28	29 30) 1 2	2 3
ТАЅК	ASSIGNED TO	PROGRESS	START	END	мт	W T F	S S	мтм	/ T F	S S	мт	w 1	F	s s	мт	wт	F	s s	мт	wт	F	s s
Ideation and Concept Generation																						
Compile available meeting times	Vatsal Trivedi	100%	8/30/21	9/2/21																		
Review previous team's work	All (async)	100%	8/30/21	9/6/21																		
Create house of quality	All (sync), Vatsal to digitize	100%	9/3/21	9/8/21																		
Create function tree	All (sync), Terence to digitize	100%	9/3/21	9/8/21																		
Create morphological chart	All (async)	100%	9/8/21	9/15/21																		
Update prior art search	Terence Lui, Sidney Wise	100%	9/14/21	9/21/21																		
Create concept sketches	All (sync)	100%	9/15/21	9/18/21																		
Discuss evaluation matrix	All (sync)	100%	9/18/21	9/19/21																		
Review prototype hardware and a	ex Olsen, Dahrius Abdelnur, Sidney V	Vis 100%	9/19/21	9/19/21																		
Complete Report 1	All (async)	55%	9/19/21	9/24/21																		
Detail Design and Specifications																						
Timeline for CAD and electrical de	Alex Olsen	10%	9/25/21	9/28/21																		
Begin hand calculations	ex Olsen, Dahrius Abdelnur, Terence	Lı 10%	9/25/21	9/30/21																		

Future Work

- Plan timeline for CAD and electrical design
- Begin detailed design sketches and initial CAD
- Complete hand calculations for initial design validation
- Draft preliminary BOM and decide what components to reuse from RUR's design

Questions?

Thank you!

